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We describe a theoretical method of determining optimal learning rates for on-line gradient descent training
of a multilayer neural networka soft committee machineA variational approach is used to determine the
time-dependent learning rate which maximizes the total decrease in generalization error over a fixed time
window, using a statistical mechanics description of the learning process which is exact in the limit of large
input dimension. A linear analysis around transient and asymptotic fixed points of the dynamics provides
insight into the optimization process and explains the excellent agreement between our results and independent
results for isotropic, realizable tasks. This allows a rather general characterization of the optimal learning rate
dynamics within each phase of learnifwge discuss scaling laws with respect to task complexity in particular
Our method can also be used to optimize other parameters and learning rules, and we briefly consider a
generalized algorithm in which weights associated with different hidden nodes can be assigned different
learning rates. The optimal settings in this case suggest that such an algorithm can significantly outperform
standard gradient descef$1063-651X98)08511-0

PACS numbegps): 87.10+e€, 02.50--r, 05.20-y

[. INTRODUCTION learning parameters and for gradient descent in particular the
choice of learning rate can be critical. If the learning rate is
Neural networks are the subject of much current researcbhosen too large then the learning process may diverge, but
regarding their ability to learn nontrivial mappings from ex- if the learning rate is too low then convergence can take an
amples(see, for exampld,1]). Specifically, we will consider extremely long time; moreover, in either case the algorithm
a learning scenario whereby a feed-forward neural networknay get trapped at a suboptimal fixed point. The appropriate
model, the “student,” emulates an unknown mapping, thelearning rate will also vary substantially over time and may
“teacher,” given examples of the teacher mappiig this  require annealing towards the end of the learning process.
case another feed-forward neural netwovkhich may be We employ a framework recently developed for analyzing
corrupted by noise. This provides a rather general learningn-line learning using methods from statistical mechanics
scenario since both the student and teacher can represeni4s5] in order to determine the time-dependent learning rate
very broad class of functiong2]. Student performance is which provides the maximum decrease in generalization er-
typically measured by the generalization error, which is theror over the entire learning process. In addition, this method
student’s expected error on an unseen example. The object cin also be generalized to optimize other parameters and
training is to minimize the generalization error by adaptinglearning rules for both smooth and discrete architectifes
the student network’s parameters appropriately. 8]. As an example we briefly consider a generalized algo-
We consider on-line learning, which is one of the mostrithm in which weights associated with different hidden
popular training methods for feed-forward neural networksnodes can have different learning rates.
and in particular we focus on stochastic gradient descent An important issue addressed here is the differentiation
learning. The training error is defined to be some measure dietween local and global optimization. A locally optimal, or
discrepancy between the teacher and student and at eagteedy, learning rate can be chosen which maximizes the
learning step the student network’s weights are adapted idecrease in generalization error at each learning step. This
the direction of negative gradient of this error, calculatedwill be far from optimal in many cases, especially when the
according to only the latest in a sequence of training exdynamics is characterized by phases of different nature. For
amples. This process is inherently stochastic because a neaxample, it has been shown that the learning time in a
training example is selected at random each time the trainingiultilayer network can be dominated by a symmetric phase
error is determined. This is to be contrasted with batch learnin which the student is trapped in a subspace characterized
ing, in which all the training examples are used to determindoy lack of differentiation between student vectors, resulting
the training error, leading to a deterministic algorithm. On-in a suboptimal generalization errpt,5]. The locally opti-
line learning can be beneficial in terms of both storage andnal procedure is then to anneal the learning rate towards
computation time for large systems. zero, in which case the student may never leave the symmet-
In this paper we describe a theoretical method of deterric subspace and perfect learning cannot be achieved. In con-
mining optimal learning rates for on-line gradient descentrast to this,global optimizationleads to a learning rate
(preliminary results from this work have been reported inwhich provides the fastest possible escape from the symmet-
[3]). On-line algorithms are often sensitive to the choice ofric phase. We will also show how local optimization of the
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learning rate may even be suboptimal at late times. 1

The paper is organized as follows. We first briefly de- G(J“-?‘)EE[U(J“,f”)—é““]Z
scribe a theoretical framework for modeling on-line learning
in a soft committee machin@ two-layer network with fixed 1K M
output weights in the limit of large input dimension, which =5 [E g(x)— > gym)—p*| . (D)
uses methods from statistical mechanics. The optimal time- =1 n=1
dependent learning rate is then derived for this case, usingf\his training error is then used to define the learning

variational calculation to optimize the total change in ge”er'dynamics via a gradient descent rule for the update of
alization error over a fixed time window. We study the dy- student  weights J{L+1:J{L+(7’/N)5{L§u' where 8"

namics with the optimal learning rate numerically for realiz- ", M K ;
able noiseless learning and for learning from noise-corrupted_ 2 (X[ Zn-19(Yn) = Zj-10(x) +p*] and the leaming
examples(output nois¢ The algorithm is analyzed in the raten_has_ been_ scaled with the mput_sbzle P_erformance on
neighborhood of fixed points which dominate the dynamicaf"1 typlcal Input m_the absence of rr110|se ﬁefmes the generali-
trajectory and links are made with recent numerical and an _atlon eTrOrf.g(J)=.< E(J'§7>{f}|"=° through an average over
lytical studies of these fixed poinf8] which provide a gen- he dlstr|bu_t|0n of input vectors. .
eral characterization of the optimal learning rate dynamics E)_(pressmns for the g_enerqllzatlon error and Iez_irnl_ng_ dy-
within each phase of learningve discuss scaling laws with hamics have been obtainéfl] in the thermodynamic limit .
respect to task complexity as an exampknally, we show (N__m)' and can be represented by a set of macroscopic
how our variational approach can be generalized in order wyariables(order paramete}sof the formJ;- J,=Qix, Ji-By
deal with site-dependent learning rates, leading to some ir= Rin @1dBn-By=Tnm, measuring overlaps between stu-
teresting observations. dent and teacher vectors. The overleﬁbarde pecome the
dynamical variables of the system whileis defined by the

task. The learning dynamics is then defined in terms of dif-
ferential equations for the macroscopic variables with respect
to the normalized number of examplas= w/N playing the

The method presented in this paper may be applied ttole of a continuous time variable:
optimize training parameters and learning rules in general
when the on-line learning dynamics can be represented by dRin _ , &_ 42y )
differential equations for a set of order paramef{éis How- da 79" Tda 7t 7 vk
ever, we restrict our analysis here to gradient descent learn-
ing in a soft committee machin@] and in this section we Where éin=(8¥n)s, ¥i=(IXk+Xi)ig, and vy
establish a framework to describe the learning process in thig{ 9 d) g - The explicit expressions fap;, , i, vik, and
case. €4 depend exclusively on the overla@s R, andT [5]. The

We consider a student mapping from BiRdimensional ~ equations of motion, depending on a closed set of param-
input space &RV onto a scalar function o(J,£) eters, can pe integrated and iteratively solv_ed, providir)g a
==K g(J3;- &, which represents a soft committee machine full descnpuon of the order parameter evolution from which
whereg(x)=erf(xv2) is the activation function of the hid- the evolution of thg generallzgtlon error can be derived. Al-
den unitsJ={J,},—« is the set of input-to-hidden adaptive though the dynamical equations considered here are only

weights for theK hidden nodes, and the hidden-to-outputStiCtly valid in the largeN limit, they have been shown to

weights are set to one. The activation of hidden nioitethe d_escrlbe mean behavior accurately for systems of realistic

student under presentation of the input patigris denoted size[12].

xt*=J;- & . This general configuration represents most prop-

erties of a general multilayer network and can easily be ex- lll. GLOBALLY OPTIMAL LEARNING RATE

tended to accommodate adaptive hidden-to-output weights ¢ e consider the fastest rate of decrease in generaliza-

[10,17 (we briefly consider this case in Sec.)lll tion error as a measure of optimality, it is straightforward to
Training examples are of the formg{,;*) where u  fing the locally optimal learning rate by determining the

=12.... labels each independently drawn example in a S€z|ye of 5 that minimizesde,/da, using the equations of

quence and components of the input vecfsare uncorre-  yotion for R andQ and the fact that the change in generali-

lated random variables with zero mean and unit variance,ation error over time depends exclusively on these quanti-

The corresponding outpuf* is given by a teacher which jjes The expression obtained for the locally optimal learning
may be corrupted by output noise and is of a similar configuyte is then

ration to the student except forMa possible difference in the

numberM of hidden units{*==._,9(B,- &)+ p*, where

B={B,}1=n<u is the set of input-to-hidden adaptive weights > (degldRin) din+ 2 (deg! IQu) i

for teacher hidden nodes apé is zero mean Gaussian noise = i B

of variance o2. The activation of hidden node in the 2> (9e,10Qu) v

teacher under presentation of the input pati@frs denoted T g7 Tk ik

yh=B,-&. We will use indiced,j,k,| to refer to units in

the student network arm,m for units in the teacher network. Although the value ofy obtained in this manner may be
The error made by the student is given by the quadratiziseful for some phases of the learning process it is likely to

deviation, be useless for others. For example, the lowest generalization

2
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error for the symmetric phase, characterized by a lack of Equationg6), (7), and(8) determine necessary conditions
differentiation between the student nodes, is achieved bfor » to maximize the reduction in generalization error over
gradually reducing the learning rate towards zero; howeveithe interval «y,@4]. The boundary conditions correspond to
decaying the learning rate in the symmetric phase will prethe locally optimal solution in Eq3), reflecting the fact that
vent the system from escaping the symmetric fixed pointat «; the choice ofy does not affect the dynamics at other
thus resulting in a suboptimal solution. times. To find the learning rate which satisfies this set of
A more useful measure of optimality is the total reductionconditions we use gradient descent on the functional deriva-

in generalization error over the entire learning process. Withive of A ey with respect to,

this measure one can then define thebally optimallearn-
ing rate in a given time windoWeg,a4] to be that which

provides the largest decrease in generalization error between
these two times. We write the change in generalization error

as an integral,

ay d ay
Aég(ﬂ):j d—?da=f L(n,a)da. 4
g

a0

p(t+1)=

C)

OA €
3 g:E Min¢in+2 vik( i+ 27vy),
n in ik

wheret is the iteration index an@ is the step size for the
iteration process. In order to choose an appropriate value for

This is a functional of the learning rate which we will mini- ® we employ second order variations,
mize by a variational calculation. Since the generalization

error depends solely on the overlaps R, andT, which are

the dynamical variables, we can expand the integrand in

terms of these variables,

deq dR; deq dQix
L(ma)= g in g i
(77 a) % (?Rin da ik aQik da
dR,
E Mln( - 77¢|n)

dQ;
—% Vik(%—ﬂlﬂik—ﬂzvik)- 5

The last two terms in Eq(5) force the correct dynamics

using sets of Lagrange multipliegs,, andv;, corresponding

to the equations of motion fdR;,, andQ;,, respectively.
Variational minimization of the integral in Eq4) with

52A€g -1 -1

OC( 5

(10

=(2% Vikvik)

Standard heuristics can be used to ensure that the iteration
process does not diverge if the second order variations be-
come negative, or close to zero.

All terms required for determining the functional deriva-
tives in Egs.(9) and(10) can be obtained by integrating the
equations for the overlaps forward, using E.and some
initial conditions, and then backwards for the Lagrange mul-
tipliers, using Egs.(6) and the boundary conditions ex-
pressed in Eq(7). In our implementation the overlaps are
stored during the forward dynamics and reused during the
backwards dynamics for the Lagrange multipliers. This pro-
cess converges within a few iterations and results in an exact
function for the optimal learning rate over the given time
window.

One limitation of the present model is the assumption of

respect to the dynamical variables leads to a set of couplefiked hidden-to-output weights and it is straightforward to

differential equations for the Lagrange multipliers,

du (9¢ i+ 77Uk)
]m__ﬂE Mln - 2 Vik : :
K IRjm

(6)
dV| 34’ (it nui)
—+ :_772 Mln - 7]2 Vik I[?Q I )
jl
along with a set of boundary conditions,
_ %% q _ 9¢g @
Min(a)= Rin an Vik(al)_aQik i

Then taking variations with respect tp we find a simple
expression for the globally optimal learning rate,

_2 MinPinT Ek: Vik ik

22 VikVik
ik

n=- t)

include variable hidden-to-output weigHt$0,11], resulting

in an extra set of dynamical equations. However, if the learn-
ing rate associated with these weights is chosen to be of the
same order as for the input-to-hidden weights then our opti-
mization procedure shows that the learning rate associated
with these weights should be set infinitely high, indicating
that the chosen scaling is inappropriate and that learning
should be on a faster time scale for these weights. This can
be incorporated as an adiabatic elimination of the fast vari-
ables, as justified ifil0] where it is shown that this provides

a locally optimal choice for the hidden-to-output weigkes
choice which minimizes the generalization error instanta-
neously. Our analysis therefore indicates that adiabatic
elimination is also globally optimal. Since the soft committee
machine considered here captures the main features of the
dynamics for the remaining input-to-hidden weights, we will
not consider hidden-to-output weights further in this work.

IV. NUMERICAL RESULTS

The examples presented in this section will involve stu-
dents and teachers of equal complexik/=M) and isotro-
pic teachersT,m= dnm), although the technique can be used
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FIG. 1. Results are presented for a three hidden node student trained to emulate an isotropic Tegehér,() of the same configu-
ration. The globally optimal learning rate is shown (g along with the corresponding evolution of the generalization error and order
parameters irtb), (c), and(d). The inset of(b) shows the generalization errsolid line) and the magnitude of the opposing contributions
to the leading ternfdashed lines—upper proportional to-2q, lower proportional to 8—c). The Lagrange multipliers are shown(ig) and
(f) using a log scale, with the later stages magnified in each {dsshed line for curves associated with the lower figure

for any soft committee machine. Anisotropic teachers ardransient fixed point is alterdd 3]). As already pointed out,
briefly considered in Sec. VI, when we introduce a site-the framework used here describes mean behavior accurately
dependent learning rate. Structurally unrealizable problems much smaller systeni4.2].

(K<M) exhibit qualitatively similar behavior to the noise-
corrupted teacher which is considered below and are not dis-
cussed here. Initial conditions for the overldpg and Q; ..y

are taken randomly from a uniform distributics 0,10 °] In our first example we consider a realizablg=M
while the vector lengthsQ;; are taken fromU[0,0.5], a =3) noiseless training task. The time window is<@
choice which corresponds to an input dimension of about=600 and the learning rate is initially fixed at some arbitrary
N=10'2. The choice of initial conditions is not critical, how- value. The update in Eq9) is then iterated until conver-
ever, and the optimal learning rate in each phase of learningence and Fig. 1 shows results for the dynamics using the
is independent of initial conditionfonly the length of the globally optimal learning rate.

A. Realizable rules
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FIG. 2. A two hidden node student is trained on noise-corrupted examples generated by an isotropic Tgaehéy( of the same
configuration. The optimal learning rate is shown(@ for three noise levels?=10"2, 10°°, 107 (from left to right) over a fixed time
window 0< a<600. The corresponding generalization error is show(jrwith the inset showing a log-log plot for the decay at late times,
which indicates that the dashed and solid lines are only split afeB800.

Figures 1a)—1(d) show the optimal learning rate, gener- optimal learning does not necessarily give good long-term
alization error, and overlaps, respectively. After a short ini-performance, even asymptotically. The long-term goal in this
tial transient both the learning rate and generalization errocase is to optimize the decay rate of the order parameters,
stabilize at almost constant values, corresponding to a synwhile changes in the decay direction can provide short-term
metric phase in which the student nodes have not yet speyains but will eventually lead to poorer performance.
cialized to particular teacher nodes, as required to learn per- The various phases of learning described above are mir-
fectly. The overlaps also exhibit a plateau within this phasggreq by the Lagrange multiplier dynamics shown in Figs.
and F_ig. _Ic_) sh_ows that the s_,tudent—teacher overlaps are a'l(e) and 1f). Figure 1) shows how during the symmetric
most indistinguishabléhe indices have been orderagos- phasew;; and ., decay exponentially with similar magni-

teriori so that student nodeeventually specializes to teacher S : ;
. : tude but opposite sign. At the same time Fi¢f) Shows that
nodei). The learning rate takes a value of abopt0.97 PP g g)

[9]. Eventually, the student escapes the symmetric phase a %ntial growth with the same constant rate, which is equal in

the generalization error and overlaps exhibit exponent agnitude to the decay rate of the generalization error at this

lconv_ergen(*:[e towards the:[w resgectwetr(])pnmal v:;llutes, ?S trgc)int. The inset to each figure magnifies the short transient at
earning rateé Increases towards another constant vauue ghe ang of the optimization time window in which the expo-

7=1.28, identic.al to the. result ob_tained independelljﬂ}/ nential growth is interrupted as each Lagrange multiplier
for the asymptotically optimal learning rate by expanding thefinds the appropriate boundary value

dynamical equations for the overlaps around their asymptotic Notice that the dynamics of the overlaps and Lagrange

ﬁX(?rd poir:jt. th d of the fi ind b h multipliers forms a small number of bundled similar trajec-
owards the end of the imeé window We ODSEIVE a S prEories, reflecting symmetries in the task. By exploiting these
transient in which there is an unexpec_ted drop In the Iearnlns;lymmetries the dimensionality of the system can be reduced
rate to a value of aro_un¢j=0.41[see _F'g‘ 18)]. This can _be ._significantly, allowing a compact description for arbitragy
explal_ned by examining the expression for thg gene_rahzauognd—r' This dimensionality reduction has already been used
error in the vicinity of its asymptotic fixed point. It is pos- o study the different phases of learning[59] and in Sec.

sible to g.ain an immedigte re'ducFion in generalizatipn EITOk, we elucidate the relationship between our algorithm and
by choosing an appropriate direction for the decay eigenveGy .ce studies

tors. Using the symmetry of the problem we expand the gen-

eralization error around the fixed point vig,= 8;,(1—r) .

+(1-68,)s and Qu=5,(1—q)+(1— 8, )¢ to find two B. Noise-corrupted rules

contributions to the leading term of opposite sign, propor- In our second example we consider an unrealizable learn-
tional to 2r —q and X—c, respectively. These are shown in ing scenario by introducing additive uncorrelated Gaussian
the inset to Fig. (b) along with the corresponding generali- noise of zero mean and varianeg to the teacher’s output.
zation error for 57& a<600. By reducing the learning rate Qualitatively similar results are obtained for structural unre-

it is possible to reduce the difference in magnitude betweenlizability (K<M). The picture that emerges, shown in Fig.
these opposing contributions, leading to a reduction in gen2 for K=M =2 and various noise levelsr’=10"2, 10 °,
eralization error. However, this reduction in learning rateand 10 7), is initially similar to the realizable case but
slows down the exponential convergence of the overlaps anchanges dramatically as the system escapes the symmetric
is therefore unsustainable in the long term. Thus this greedphase. As the system begins convergence towards zero gen-
drop-off in the learning rate only ever occurs towards the encaralization error, as shown in Fig(l8, the optimal learning

of the given time window. This example shows how locally rate shown in Fig. @) begins to fall and slowly approaches
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FIG. 3. As in Fig. 2, a two node student is trained on noisy examples from a teacher of the same configuration. Here the noise level is
fixed ato®=10"7 while the optimization process is carried out over different time windowsy& a; with a;=600, 2000, and 10(from
left to right). The asymptotic decay of the learning réaeand generalization err@b) are shown for each case. The initial behavior is similar
to that presented in Fig. 2.

a decay inversely proportional tg proved to be optimal for symmetric and convergence phasasound which we can
linear systems(see, for example[14]), until reaching a make a linear expansion. We therefore carry out a simple
greedy phaséafter the kink aroundvr=440 in Fig. 2. (Re-  analysis of our variational algorithm in the neighborhood of
call that this is the generalization error in the absence ofuch a fixed point, leading to some valuable insight into how
noise. The prediction error for a noisy teacher has an additivehe algorithm optimizes performance.

constant contribution equal to half the noise varian@éis It would still be rather difficult to solve the linear model
greedy reduction in generalization error is achieved byfor such a high-dimensional system; however, for realizable
changing the decay direction, as for the realizable learningkK =M) learning of an isotropic taskT(,=T3d,m) the
scenario described above. analysis can be simplified by exploiting symmetries between

Figures 3a) and 3b) show a log-log plot of the learning the dynamical variables, thereby reducing the dimension to a
rate and generalization error, respectively, as a functiom of manageable level and avoiding degeneracies. In this way one
for optimization over time windows of varying length. One can determine generic behavior in terms of the variables
observes that both the learning rate and generalization errand K. This simplification has recently been used to deter-
approach a decay proportional taxland that the curves lie mine optimal parameters for both the symmetric and conver-
on top of one another until the greedy phase which occurgence phases by an eigenvalue analysis around each fixed
towards the end of each time window. However, unlike thepoint [9] (previous results for the convergence ph#@sg
realizable case where the drop-off in learning rate occursnade use of an inaccurate assumptidnstead of rederiving
over a relatively short time, here the final greedy phase inmany of these results, we focus on showing the close rela-
creases in length as the total learning time window increasefonship between this work and the variational method and
and this phase always takes a significant proportion of then understanding how our algorithm finds optimal param-
learning time(this is not immediately apparent in Fig. 3 until eters in the simplest scenario, in order to inform our use of
one considers that the axis represents a log scal@his is  the algorithm for more general problems. Details of the fixed
simply a reflection of the slower decay time scale for thispoints and linearized dynamics considered here are given in
problem. [9].

Our results suggest that as symmetry breaks one should The following analysis requires that the learning rate is
gradually modify the decay rate from a constant until it isfixed in the phases of interest and is therefore only applicable
proportional to 14 (in terms of a rescaled time, which is set to learning noiseless examples, at least for the convergence
to zero close to the point where symmetry is broké#ow-  phase. The noise-corrupted rules considered in Sec. IV B
ever, it may take a prohibitively long time until thealtle-  will require a different approach, perhaps using recent results
cay becomes optimal, making it irrelevant in many instancesfor optimal annealing schedules in the presence of noise
Moreover, if one decays the learning rate at a fixed rate if15]. We leave this analysis for future study.
may take an extremely long time before losses, incurred due
to the use of suboptimal learning rates in earlier stages of the A. Behavior near a fixed point
dynamics, can be recovered. Annealing the learning rate dur-

ing the symmetric phase could even lead to trapping, since -€tY be a vector of dynamical variables, which can be
the length of the symmetric phase scales inversely for thought of as deviations from some fixed point. In the neigh-

small 7 [5]. borhood of such a fixed point we have a linearized system of
differential equations,
V. ANALYSIS OF THE OPTIMAL LEARNING DYNAMICS dy
. . — =My, 11
In general, the dynamical equatio(® and(6) are rather da y (1)

hard to analyze as they are high dimensional and strongly
nonlinear. However, as we saw in the preceding section thehich corresponds to decay in the neighborhood of a stable
overlap dynamics is often dominated by fixed poifise fixed point (the convergence phaser divergence in the
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neighborhood of an unstable fixed poifthe symmetric in an optimal linear system: (1) We require that each com-
phase. Here, the matrixXM depends ony which is taken to  ponent of the fixed point for be sufficiently small to ensure
be constant within the region considered. Izetlenote the the final term in Eq.(14) is negligible, and(2) we further
associated vector of Lagrange multipliers. The linearizedequire thaf 8;|<|g;| for at least ong for which\;>\; and

equivalent of Eq(6) is then zkui}(lauk,-/an is nonzero(which implies dependence of
the jth eigenvector ony).
E ——MTz (12) Close to the optimal learning rate only the first term in Eq.
da ' (14) will be significant, since any other remaining terms

would have a strong dependencéhere we assume that one
Let U denote the matrix whose columns are eigenvectors ofannot choose; to make the first term zero while simulta-
M and let\ denote the corresponding vector of eigenvaluesneous|y setting the prefactor of any remainiaglependent
Then U™1)T is the matrix of eigenvectors of MT with  term to zerg. In practice, for a nondegenerate system we
eigenvalues-A. We write the general solutions fgrandz  often find that a single mode in the Lagrange multiplier dy-

in component form, namics is dominant|3;|>|i;|) and in this case the effect
of our algorithm is to carry out gradient descéascenk on
yi= EJ: Ujexplal)), z=zg+ E,: ,BJ-UJ-’ilexp(— ax)), this dominant mode,
(13 A€, O\
S —, (15)
where the{zy;} are components of a fixed point ferand are Y a7

independent ofy, while B; weights theith mode ofz and N )
will depend on the boundary conditions of the fixed pointThe second condition above suggests that the dominant

neighborhood. mode will have a relatively large eigenvalue, although not
The functional derivative ofAe, with respect toy is necessarily the largest eigenvalue. For example, if the largest
given by eigenvalue is associated with an eigenvector which is inde-
pendent ofy then we can say nothing about its weight rela-
SAeg M [ d(My) ay O\ tive to modes with smaller eigenvalues. In this case it is
57 =z %y=z an -M % =Ei Bi% necessary to consider the boundary conditions of the fixed
point neighborhood in order to determine which mode is
AUy dominant. In both the symmetric and convergence phases we

+2 BN —a)er T Ut 5 find exactly this situation and in the latter phase we find the
ij k n . . .
mode with the second largest eigenvalue to be dominant
I, IUj; (each phase is considered in greater detail beldhe sign
W*‘MW e, of the proportionality constant in Eq15) also depends on
the boundary conditions of the fixed point neighborhood and
(14)  we typically find that the eigenvalue is maximized within an
) unstable fixed pointmaximizing the speed of escape from
where we have used Egd.1), (12, and(13). Equation(14)  the symmetric phageor minimized when converging to a
identifies the various contributions to changeszrunder  stgple fixed point. The case where two or mdren-
gradient descent on the functionlky(7) in the neighbor-  degeneratemodes contribute is discussed at the end of this

hood of a fixed point. The first term contributes changes insection, when we consider the effect of second order contri-
the gradient direction of the eigenvalues while the secongytions to the generalization error.

term involves derivatives of the eigenvectors with respect to Note that our discussion is not strictly valid if the fixed

7. The final term involves the fixed point fa Notice that  point changes withy, as is the case for the symmetric phase
the first term is independent af while any contributions  considered below. The picture developed here holds as long

from the second term will necessarily dependeofThe final  as these changes are relatively slow and we will therefore
term can only contribute a quantity independentaolf an  neglect any such; dependence.

eigenvalue becomes zero and we do not find zero eigenval-
ues for either of the fixed points considered here in the
neighborhood of the optimal learning rate.

The functional derivative in Eq14) will only disappear As demonstrated in Sec. IV, the learning time can be
at constanty if a-dependent terms are negligiblef much  dominated by a symmetric phase in which student nodes fail
lower order than the first term, which is independenadf  to differentiate between teacher nodes, resulting in poor gen-
This condition is satisfied by ensuring that any term whoseeralization performance. This phase represents an attractive
exponent is positive and proportional #ohas a sufficiently fixed point of the dynamics which becomes unstable as small
small prefactor. We therefore obtain conditions sufficient,perturbations due to nonsymmetric initial conditions eventu-
and most likely necessaffor example, these conditions are ally lead to the symmetry breaking required for the student to
necessary if each contribution to the second term of(Ef.  improve.
has a different exponent proportional tg9 which is also Unfortunately, it seems impossible to study the symmetric
different to any exponents in the final term; this is true sophase analytically for finite; and a numerical study of this
long as each\;—\; takes a unique value which also differs fixed point was therefore carried out [8], reducing the
from every\;], for the existence of a constaptfixed point  dimensionality of the system by exploiting symmetries be-

+; Zoi

(1+\)U;;

B. The symmetric phase
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tween the overlaps in order to determine generic behavior. 10°
We employ the same dimensionality reduction in order to
analyze our linearized system in the neighborhood of the
symmetric fixed point. The overlaps are then represented by 2l
Qi =Q8,+C(1—3,) and R;,=R8,,+S(1—3,,), where 107
student node indices have been chosen to correspond with
the teacher node with which they will eventually specialize. . T
Following [9], we can make some analytical progress by 107} A X
considering a fixed point characterized Qg C andR=S. |R|,|s'|\\.,. /
This fixed point only exists for significant times whenis AN
small, since any difference betweénhandC is quickly in- 6| v/
creased by a positive eigenvalue of ordgr The resulting
fixed point withQ>C is the one actually observed in our s s s
simulations[see Fig. 1d)] but unfortunately this fixed point 0 100 200 300 400
cannot be studied analytically. Many features of this fixed o
point are also observed for th@=C fixed point, however,
and it is therefore instructive to consider this case first.

To aid clarity we chooselr=1, although qualitatively
similar results are found for arbitrafy. The vector of de-
viations from the order parameter fixed point ys=(R
—R*,S—S*,Q—Q*,C—C*)" where R*,S*,Q*,C*)" is
the fixed point(we assume that the dependence of this
fixed point is negligibleé The conjugate vector of Lagrange
multipliers 'SZZ(I“R’HS'VQ*VC_)T- They dynamics is asso-  the fixed point considered here and therefore we can only
ciated with the following matrix: proceed by observing what happens in practice.

K1 1 U U We find that theQ=C fixed point considered above
(123~ (/24 seems to be a rather good model for Qe-C fixed point

|ierl, lies|

t
i .
".\_ o

FIG. 4. Magnitudes of the rates of change fr S, and their
conjugate Lagrange multipliers are shown during the symmetric
phase for a simulation of the reduced dimensionality equations of
motion with T=1 and K=3. The curves ardR| (dotted, ||
(dashedl |ug| (full), and|ug| (dot-dashel The learning rate is
fixed at the optimal value for the symmetric phase and the initial
conditions wereR=10"°%, Q=0.25, andS=C=0.

U -1 1 Uups Uupa 16 observed in simulations. In Fig. 4 we plot the magnitude of
| 0 Uy 1 1 | R=dR/de, S=dYdae, pug=dugr/da, and us=dug/da
0 Uy 1 1 during the symmetric phase, for simulations of the reduced

dimensionality system considered hdwmith K=3 and 7
fixed at its optimal value for the symmetric phaskitially
: R andS are indistinguishable until differences due to asym-
eigenvalue); and the components;; depend ony andK metric initial conditions are amplified and they diverge ac-

(9] The colu_mns_ ol have bee_n arranged so f[hat they arecording to the dominant mode described abowe plot the
associated with eigenvalues which are decreasing from left to

right (\i~;<X;). The first eigenvalue is the only positive Magnitudes here—the signs & and S are different after
one (unless is significantly larger than its optimal setting 2Pouta=160. Meanwhile,ur and us decay with the same
and results in the divergence Bf and S which eventually ~fate as the growth dk andS and their rates of change have
leads to escape from the symmetric phase. exactly the same magmtucje but opposite sign. _Thls is in
Recall that the eigenvectors for the Lagrange multiplier2dreéement with the behavior expected for the first mode,

dynamics are given by the columns d#{%)T and that the whose eigenvector for the Lagrange multiplier dynamics is
ith column is associated with eigenvaltien, shown in the first column ofd )" above. This mode does
|

not contribute to changes in, and v and becauséQ and

where thath column ofU is the eigenvector associated with

1K 0 vc are observed to have much smaller magnitudes fhan
_ and s we conclude that the second mode is associated with
1K 0 L S .
(U HT= . . (17 a much smaller weight in the Lagrange multiplier dynamics
0 (Usp— Uy (B,<B;). The first mode is therefore dominant and the
0 —(Ugy— Uyt variational algorithm finds the maximum of; [see Eq.

(15)]. This is exactly the mode considered[®] where\;
The entries in the final tw lumns of th nd m trixwas maximized numerically and our results agree well with
€ entries € final two cofumns ol the seco alMX asults from that worKmore evidence for this is provided in

involve various combinations of tHe;; andK which are not g 'y, B. However, in that study it was very difficult to find
shown here as their exact form is not important. From theth - :

discussion in Sec. V A we expect that the third and fourthW
modes for the Lagrange multiplier dynamics will have a very
small weight (85,4<81/). However, since the first eigenvec-

tor is independent of; we cannot determine whether it will

be dominant without knowing something about the boundary
conditions of the symmetric phase. These boundary condi- Once the student nodes specialize to specific teacher
tions are determined according to the dynamics away fronmodes the dynamics quickly leaves the symmetric phase and

ork, and it was not known whether that fixed point really
etermined the optimal time-dependent learning rate.

C. The convergence phase
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approaches a convergence phase in which the overlaps and
generalization error exhibit an exponential convergence to-
wards their optimal value§n the absence of noiseln this

case it is possible to study the fixed point analyticgBy.

We first discuss a completely linear system, in which higher
order contributions to the generalization error are negligible.
Inclusion of second order terms is required for a more com-
plete description, as discussed in Sec. V D.

As in the symmetric phase there is a mode whose eigen-
vector is independent af (recall our second condition for a
fixed point in an optimal linear system in Sec. V.AThis
turns out to be the slowegteast negative mode for the

overlap dynamics and is orthogonal to the leading term of 500 5éo 540 5éo 5éo 600

the linearized generalization error, so not contributing to its a

decay. In this case the mode associated with the next largest

eigenvalue dominates the Lagrange multiplier dynarfaosl FIG. 5. The magnitudes of the overlap deviatiéns 1-R, ¢

therefore the first term in Eq14)] at late times. It is there- =1-Q, ¢c=C, s=9) and Lagrange multipliers are shown during

fore this eigenvalue which is minimized by our variational the convergence phase for a simulation of the reduced dimension-
algorithm[recall Eq.(15)]. ality equations of motion withT=1, K= 3, and optimal learning

In general it is difficult to study analytically how the rate. The curves for the overlap deviations gge (full), |r| (dot-

boundary conditions affect the Lagrange multiplier dynamicg®®: ¢l (dashed and [s| (dot-dashel and their conjugate

because of the greedy drop-off ipat the end of the optimi- Lagrange multipliers are given the same line type. The lower solid
. . ind hich d ibed i . curve shows the generalization error. The initial conditions were

zatlon_tlme window which was described in Sec._(Bée Fig. R=105, Q=0.25 andS=C=0,

1). This greedy phase is not described by our linear system ' '

(which requires a constani) and therefore the final bound overlap deviationsr=1-R, q=1-0, s=S, c=C) and

ary conditions occur outside the region in which our Iinearthe.r coniuaate Laarange multioliers during the converaence
model provides a good approximation. However, for the per- ' Jug grange muttipti uring Verg

ceptron M=K=1) this greedy phase does not occur andphase for a simulation of the reduced dimensionality system.

the boundary conditions are well defined for our linear Sys_The generalization error is also shown and exhibits a faster

tem. It is therefore instructive to consider the perceptron as geca_y than the overlaps, because the slow mode which _de-
special case. ermines the decay of the overlaps is orthogonal to the lin-

For the perceptroriwith T=1) we expand around the earized generalization err@nigher order contributions to the

convergence fixed point vig=(r.q)" wherer=1-R and generalization error are negligible in this cadeis therefore
q= 1_% with assoc?ated ngrar;ge multipliezs: (z, ,2,) the second slowest mode which determines the decay rate of
= 0z

They andz dynamics are associated with the following ma- the generalization error. As for the simpler perceptron case

trices, respectivelyrecall that the columns are eigenveciors described above, it is this second mode which is mirrored in
- fesp 9 the Lagrange multiplier dynamics and Fig. 5 shows how the

Lagrange multipliers grow with the same rate as the gener-
), (18 alization error decays. The second mode is therefore domi-
1 nant and the variational algorithm minimizes the associated
) . eigenvalue[see Eq.(15)]. This eigenvalue was minimized
whereU, and U, are functions ofy (see[5] for detaild.  explicitly in [9] and again we find excellent agreement with

The linearized generalization error is proportional to 2 yesylts from our variational algorithiisee Sec. V E
—q, so that the boundary conditions for the Lagrange

multipliers are (ignoring a multiplicative constantz(a)
=(2,—1)" [see Eq.(7)]. This boundary condition corre-
sponds exactly to the second column Wi ()T (except for a The above discussion does not address the consideration
change in signso that the mode associated with this columnthat although we can assume an essentially linear dynamical
must be completely dominant for the dynamics at late system in the neighborhood of fixed points, we may still
times. Therefore the mode whose eigenvector is orthogondilave to consider higher order contributions to the generali-
to the generalization errqithe first column inU) in they  zation error. Optimizing the convergence rate of the linear-
dynamics is irrelevant to determining the optimal learningized dynamics is only optimal in general if we are minimiz-
rate in a completely linear systeflowever, as discussed ing a linear function of the dynamical variables. Indeed, it
below this mode may still contribute to second order terms inwas noted if9,11] that quadratic contributions to the gen-
the generalization errar eralization error determine the slow mode for convergence
Although we cannot extend this argument to a generafor realizable learning N=K) with an isotropic teacher
multilayer system, because the boundary conditions occu(T,,=TdJ,m) WhenT is above some critical valuk.;;. This
outside the region in which our linear model is reliable, ais because there is an eigenvector orthogonal to the linear-
similar effect is observed in general. Recall the reduced diized generalization error which therefore does not contribute
mensionality equations of motion which were used to anato its decay, but which does contribute to the decay of qua-
lyze the symmetric fixed poin{Q;,=Qdy+C(1— ), dratic terms in the generalization error. ForT.;; the op-
Ri,=Ré,,+S(1— 6,)). Figure 5 shows the evolution of the timal asymptotic learning rate is the value which allows the

Uz,
—Uyp

U12

U:
2 Uy

; (Ul)T“(

D. The effect of quadratic terms in the generalization error
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25 - - - - - the optimal value for a linearized generalization errar (
N =1.963). Forcing the learning rate to approach the asymp-
/N totically optimal value for the full generalization error at late

/ - — ] times leads to poorer performance, suggesting that the algo-

n / \ rithm does indeed find the optimal learning rate. For very

{f - | long time windows we would expect the algorithm to reach

-7 the asymptotically optimal learning rate after the symmetric
- phase and to stay there, before dropping to the optimal learn-

/ ing rate for a linearized generalization error. However, this

would seem to require a very low final generalization error

for the cases we have consider@d least 102°, depending

. . . . . on T andK) and since errors of this order are of little physi-

50 100 150 200 250 300 cal relevance and require greater numerical accuracy than

a achieved by our implementation we do not pursue this re-
gime here.

1.5

0.5
0

FIG. 6. The optimal learning rate is shown for a two hidden
node student learning an isotropic teach€ (=T, also with
two hidden nodes. The two curves are for teacher lengtad E. Generic behavior
(solid curve andT=5 (dashed curve The larger teacher length is Using the reduced dimensionality equations of motion
above the critical valug&; where second order contributions to the makes it possible to find the optimal learning rate for arbi-
generalization error become significant at late times. The Iearnin&;rary K, since we avoid the increase in computation time
time has been rescaled so that the curves fit on the same graph, WWécess'ary to deal with large systerfEhe computation time

a=a for T=1 anda=1.875 for T=5. still seems to grow withK because of increased precision
required in the numerical integratigniVe can therefore run
linear and quadratic terms to decay at the same rate. Orgur algorithm for various values df and T in order to
might therefore expect our algorithm to approach this asdeduce scaling laws for the optimal learning rate within the
ymptotically optimal value at late times. However, in view of two phases of learning. However, as we saw above our al-
the fact that the end-point boundary conditions for thegorithm simply performs gradient descegscent on the
Lagrange multiplier§see Eq(7)] are first derivatives of the relevant eigenvalue within each phase and the results should
generalization error, it seems unlikely that second ordetherefore compare closely to results obtained by optimizing
terms in the generalization error will cause significantwith respect to this eigenvalue directly.
changes to the Lagrange multiplier dynamics at late times. In  In Fig. 7 we compare the optimal learning rate determined
fact, we find that the algorithm deals with quadratic effectsby our method to the value found by a direct numerical ei-
before converging to the optimal learning rate for a linear genvalue analysi§9] for various values oK. The results
error. agree well and any discrepancies may be due to the varia-
Figure 6 shows the optimal learning rate for a two hiddentional algorithm not converging completely, or because there
node student learning an isotropic teacher of the same coiis some variance in the learning rate within the symmetric
figuration. The two curves are far=1 (<T.;) andT=5 phase(we used an approximate halfway point to determine
(>Tgi). For T<T,; we get a similar picture to Fig.(d) Nsym- This outcome is rather fortuitous, as the scaling laws
with two well defined plateaus determining the symmetricpreviously determined for each phasd & also describe the
and convergence phases. However, Tor T, the optimal  scaling behavior for the globally optimal learning rate. This
learning rate rises after the symmetric phase towards, but netas not obviousa priori since it was not known that the
reaching, the asymptotically optimal value identified[8]  optimal time-dependent learning rate would be dominated by
(n=2.79) for the full generalization error and then falls to two plateaus, each with a constant learning faideed, the

35 4
'rlsymK a nc(va b
3 (a) (b)
3.9
25
3.8
2
15 5 10 15 20 8.7 5 10 15 20
K K

FIG. 7. We compare results for the optimal learning rate found by our variational métiolés to results from a direct optimization
of the relevant eigenvaluesolid line) as a function of task complexitf for (a) the symmetric phase ari®) the convergence phase. A
reduced dimensionality system describing an isotropic, realizable Tagk=(5,,m) was used to obtain both sets of results.
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discussion in Sec. V D shows that this is not always thehe various hidden nodes. The optimal learning rates and the
case. corresponding generalization error are shown in Figa) 8

It is interesting to summarize some of the scaling lawsand §c), respectively. Comparison with Fig(d) shows a
deduced i 9] (we will only consider fixedT herg. During  significant improvement over standard gradient descent, al-
the symmetric phase the optimal learning rate scalés &5 though the dynamics is still dominated by a symmetric pla-
for large K and the trapping time within the symmetric teau(the initial conditions were the same in both casés
phase, which determines the total training time, scales ashortened symmetric plateau is achieved by setting one
K8 During the convergence phase the optimal learning ratéearning rate close to zero while the other two are assigned a
scales as K. The maximal learning rate in each phase,high value, much higher than the optimal learning rate for
above which perfect learning is impossible, scales in thestandard gradient descent on the same prollem lower
same way as the optimal learning rate. One therefore findthan the optimal learning rate for standard gradient descent
that using a learning rate which is optimal asymptoticallywith M=K =2). Once the two nodes associated with the
will be very bad during the transient, either leading to trap-high learning rate become associated to specific teacher
ping within the symmetric phase or divergence of the studenhodes, the learning rate associated with the third node rises
weight vector norms. For an account of other scaling pherapidly as it learns the remaining teacher node. Eventually,
nomena(for example, with respect to task nonlineariy,  all learning rates converge to the same constant and asymp-
seg[9]. Of course, in many cases it would be very difficult to totically optimal value, which is the same as for standard
carry out an eigenvalue analysiwe have only considered gradient desceljsee Fig. 1a)], before the greedy drop-off in
the simplest scenario of a single parameter and an isotropie; which was explained in Sec. IV. The same pattern of suc-
noiseless tagkand our algorithm therefore provides a pow- cessively active learning rates and hence a phased symmetry

erful alternative tool for determining generic results. breaking is repeated for larger isotropic systems, suggesting
that using different learning rates for different nodes may be
F. Limitations to the variational approach beneficial for speeding up the learning process in general and

. . o i ic ph i icular.
The analysis in Sec. V A suggests a possible limitation Otescapmg the symmetric phase in particular

our variational algorithms if eigenvalues are multimodal, as
might be the case if the equations of motion involved higher
powers, or other nonlinear functions, of the parameters being In our second example we train the same three hidden
optimized. In this case the algorithm may get stuck in func-node system on examples generated by a graded three node
tional local minima, since we are effectively carrying out teacher T,,=nd,m. The optimal learning rates and the
gradient descer(ascent on the dominant eigenvalue. corresponding generalization error are shown in Figb) 8
Certain initial settings for the learning rate may also resultand §d), respectively. The optimal site-dependent learning
in convergence to functional local minima which are subop-+ate shows a much richer behavior in this example. Initially,
timal. For example, if the learning rate is chosen to be verythe learning rate associated with the node learning the largest
low initially and the time window is not sufficiently long for teacher vectofsolid line) is highest, followed by phases in
the system to leave the symmetric phase then the algorithmvhich the learning rates associated with nodes learning the
may anneal the learning rate in an attempt to optimize perintermediate and smallest teacher vectors increase in turn.
formance without leaving the symmetric subspace. As withThis corresponds to what one might expect, since the system
any differential method we are at the mercy of local minima;specializes to teacher nodes in order of decreasing impact to
our conditions for the globally optimal learning rate are nec-the teacher output. Eventually each learning rate approaches
essary but not sufficient. From careful study of the dynamicsan asymptotically constant value, before dropping off to-
we are satisfied that all the solutions presented in this workvards the end of the time window due to the greedy effect

B. Graded teacher

are globally optimal. explained in Sec. IV. Here, we see that the order of learning
rate magnitudes has changed, so that the learning rate for the
VI. SITE-DEPENDENT LEARNING RATES node associated with the largest teacher node is smallest and

vice versa. This is a somewhat unintuitive result, since the

It is straightforward to extend our method to more com-Optimal asymptotic learning rate for standard gradient de-
plex learning rules and to different learning parameters. As &cent increases with increasiiig 9]. Unfortunately, an ana-
simple example we consider a generalized gradient descehftical study of this scenario is hampered by the lack of di-
algorithm in which different learning rates are associatednensionality reducing symmetries in this case. It would be
with different hidden nodes, so that the new update rule ignost interesting to study the relationship between values as-
given byJ#* 1= 38+ (1N) 7,84 &". This enables the system signed to the learning rates in this case and the correspond-
to explore more complex routes to breaking symmetry and9 effe_ctlve vaI_ues suggested by other methods which incor-
converging to the optimal solution. The derivation for the porate information about curvature of the mean error surface
optimal site-dependent learning rate follows the discussion iNd have been proved asymptotically optirft].

Sec. lll closely and is therefore not included here.
VIl. CONCLUSION

A. Isotropic teacher We have described a method for determining optimal

In our first example we train a three hidden node systenfearning rates for on-line learning in a soft committee ma-
on examples generated by a three node isotropic teachehine, using a variational calculation to maximize the total
(M=K=3), using three different learning rates related toreduction in generalization error over a fixed time window.
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FIG. 8. A three hidden node student with site-dependent learning rates is trained to emulate a teacher with the same number of hidden

nodes. The globally optimal learning rates are showriainfor an isotropic teacherT(,,= é,,n) and in(b) for a graded teacherT(,
=né,m). The corresponding generalization errors are show()iand(d), respectively. Inb) the learning rates are associated with nodes
learning the following teacher nodes—dashed line for the node learning the first teacherTppdé ), dotted line for the secondr§,
=2), and solid line for the third33=3).

The method makes use of a recent statistical mechaniaietermine the fastest asymptotic decay. We find that these
model which allows a compact and exact description of thesecond order effects play a role immediately after the sym-
learning process for large input dimension via differentialmetric phase, but that the algorithm always approaches the
equations for a small number of macroscopic quantities. optimal learning rate for a linearized generalization error at
Learning with the optimal learning rate still suffers from late times. In fact, these second order effects are only rel-
trapping in a symmetric phase reported4n5], which domi-  evant when the optimization time window is sufficiently
nates training time, and the fastest escape time is achieved ltgrge to allow a very low generalization error and they may
maximizing the only positive eigenvalue within this unstabletherefore be irrelevant in practice.
fixed point. An analytical study of our variational algorithm  Learning from corrupted examples provides a very differ-
in the neighborhood of fixed points, which uses a linearent picture. After leaving the symmetric phase the optimal
model, shows this to be the expected behavior of our algolearning rate is gradually annealed towards a decay inversely
rithm and explains the excellent agreement with previougproportional toa. As for the noiseless case there is a greedy
results for isotropic, realizable taskg], in which the escape phase towards the end of the optimization time window, re-
eigenvalue within this phase was maximized explicitly, al-flecting a change in the decay direction, which provides a
lowing a rather general characterization of the optimal learnshort-term improvement but is unsustainable for longer
ing rate dynamics. During the convergence phase the slowetimes. Our results suggest that there is some danger in an-
mode, which is orthogonal to the first order term in the gennealing the learning rate too early, since losses due to an
eralization error, does not contribute to the optimizatiomof initially low learning rate might never be recovered and the
at late times and the dominant mode was the next sloweskearning process could even become trapped within the sym-
This result is also found to be consistent with our analysis ofetric phase.
the variational algorithm near a fixed point. For the percep- The main benefit of the present approach lies in its gen-
tron it is possible to show exactly how the boundary condi-erality. We can apply our optimization scheme to learning
tions lead to the exclusion of the slowest mode, but in genscenarios or phases of learning for which analysis is infea-
eral this is not possible because the boundary conditionsible, either because the dynamics cannot be captured by any
occur outside the region in which our simple linear modelsufficiently simple model or because we have insufficient
holds due to a greedy minimization of the generalizationinsight. Indeed, we have recently used our approach to de-
error at the end of the optimization time window. The maintermine globally optimal learning ruld§], extending previ-
difference between our results for this example and theus results for locally optimal rulgd7]. We have also used
analysis in[9] is in the consideration of second order contri- this framework to determine the efficacy of a quadratic regu-
butions to the generalization error, which in some situationdarizer[7] and in order to quantify the performance of natural
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gradient learning 8], an on-line variable-metric algorithm methods for selecting parameters close to the optimal ones
which was recently introduced by Amdrl6]. In the latter determined here. This has been carried through in some cases
study we show how learning time scales better with increasfor the asymptotic stages of learnifggee, for exampld,18])

ing numbers of hidden nodes for this algorithm when com-and asymptotically optimal algorithms also eXi$6], but as
pared with optimized gradient descent. In the present papeve have seen here the transient stages of learning will often
we showed how one can apply the optimization procedure tdominate the training time. We hope that the present analysis
a generalized algorithm in which different nodes are associwill aid the search for a principled solution to this problem.
ated with different learning rates. The picture which emerges

shows a rich behavior for the optimal Iearning'rates, espe- ACKNOWLEDGMENTS
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