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Analysis of on-line training with optimal learning rates
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We describe a theoretical method of determining optimal learning rates for on-line gradient descent training
of a multilayer neural network~a soft committee machine!. A variational approach is used to determine the
time-dependent learning rate which maximizes the total decrease in generalization error over a fixed time
window, using a statistical mechanics description of the learning process which is exact in the limit of large
input dimension. A linear analysis around transient and asymptotic fixed points of the dynamics provides
insight into the optimization process and explains the excellent agreement between our results and independent
results for isotropic, realizable tasks. This allows a rather general characterization of the optimal learning rate
dynamics within each phase of learning~we discuss scaling laws with respect to task complexity in particular!.
Our method can also be used to optimize other parameters and learning rules, and we briefly consider a
generalized algorithm in which weights associated with different hidden nodes can be assigned different
learning rates. The optimal settings in this case suggest that such an algorithm can significantly outperform
standard gradient descent.@S1063-651X~98!08511-0#

PACS number~s!: 87.10.1e, 02.50.2r, 05.20.2y
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I. INTRODUCTION

Neural networks are the subject of much current resea
regarding their ability to learn nontrivial mappings from e
amples~see, for example,@1#!. Specifically, we will consider
a learning scenario whereby a feed-forward neural netw
model, the ‘‘student,’’ emulates an unknown mapping, t
‘‘teacher,’’ given examples of the teacher mapping~in this
case another feed-forward neural network! which may be
corrupted by noise. This provides a rather general learn
scenario since both the student and teacher can repres
very broad class of functions@2#. Student performance i
typically measured by the generalization error, which is
student’s expected error on an unseen example. The obje
training is to minimize the generalization error by adapti
the student network’s parameters appropriately.

We consider on-line learning, which is one of the mo
popular training methods for feed-forward neural networ
and in particular we focus on stochastic gradient desc
learning. The training error is defined to be some measur
discrepancy between the teacher and student and at
learning step the student network’s weights are adapte
the direction of negative gradient of this error, calculat
according to only the latest in a sequence of training
amples. This process is inherently stochastic because a
training example is selected at random each time the train
error is determined. This is to be contrasted with batch lea
ing, in which all the training examples are used to determ
the training error, leading to a deterministic algorithm. O
line learning can be beneficial in terms of both storage
computation time for large systems.

In this paper we describe a theoretical method of de
mining optimal learning rates for on-line gradient desc
~preliminary results from this work have been reported
@3#!. On-line algorithms are often sensitive to the choice
PRE 581063-651X/98/58~5!/6379~13!/$15.00
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learning parameters and for gradient descent in particular
choice of learning rate can be critical. If the learning rate
chosen too large then the learning process may diverge,
if the learning rate is too low then convergence can take
extremely long time; moreover, in either case the algorit
may get trapped at a suboptimal fixed point. The appropr
learning rate will also vary substantially over time and m
require annealing towards the end of the learning proc
We employ a framework recently developed for analyzi
on-line learning using methods from statistical mechan
@4,5# in order to determine the time-dependent learning r
which provides the maximum decrease in generalization
ror over the entire learning process. In addition, this meth
can also be generalized to optimize other parameters
learning rules for both smooth and discrete architectures@6–
8#. As an example we briefly consider a generalized al
rithm in which weights associated with different hidde
nodes can have different learning rates.

An important issue addressed here is the differentiat
between local and global optimization. A locally optimal,
greedy, learning rate can be chosen which maximizes
decrease in generalization error at each learning step.
will be far from optimal in many cases, especially when t
dynamics is characterized by phases of different nature.
example, it has been shown that the learning time in
multilayer network can be dominated by a symmetric ph
in which the student is trapped in a subspace character
by lack of differentiation between student vectors, result
in a suboptimal generalization error@4,5#. The locally opti-
mal procedure is then to anneal the learning rate towa
zero, in which case the student may never leave the symm
ric subspace and perfect learning cannot be achieved. In
trast to this,global optimization leads to a learning rate
which provides the fastest possible escape from the symm
ric phase. We will also show how local optimization of th
6379 © 1998 The American Physical Society
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6380 PRE 58MAGNUS RATTRAY AND DAVID SAAD
learning rate may even be suboptimal at late times.
The paper is organized as follows. We first briefly d

scribe a theoretical framework for modeling on-line learni
in a soft committee machine~a two-layer network with fixed
output weights! in the limit of large input dimension, which
uses methods from statistical mechanics. The optimal ti
dependent learning rate is then derived for this case, usi
variational calculation to optimize the total change in gen
alization error over a fixed time window. We study the d
namics with the optimal learning rate numerically for real
able noiseless learning and for learning from noise-corrup
examples~output noise!. The algorithm is analyzed in th
neighborhood of fixed points which dominate the dynami
trajectory and links are made with recent numerical and a
lytical studies of these fixed points@9# which provide a gen-
eral characterization of the optimal learning rate dynam
within each phase of learning~we discuss scaling laws with
respect to task complexity as an example!. Finally, we show
how our variational approach can be generalized in orde
deal with site-dependent learning rates, leading to some
teresting observations.

II. THE GENERAL FRAMEWORK

The method presented in this paper may be applied
optimize training parameters and learning rules in gen
when the on-line learning dynamics can be represented
differential equations for a set of order parameters@6#. How-
ever, we restrict our analysis here to gradient descent le
ing in a soft committee machine@4# and in this section we
establish a framework to describe the learning process in
case.

We consider a student mapping from anN-dimensional
input space jPRN onto a scalar function s(J,j)
5( i 51

K g(Ji•j), which represents a soft committee machin
whereg(x)[erf(x/&) is the activation function of the hid
den units,J[$Ji%1< i<K is the set of input-to-hidden adaptiv
weights for theK hidden nodes, and the hidden-to-outp
weights are set to one. The activation of hidden nodei in the
student under presentation of the input patternjm is denoted
xi

m5Ji•jm. This general configuration represents most pr
erties of a general multilayer network and can easily be
tended to accommodate adaptive hidden-to-output wei
@10,11# ~we briefly consider this case in Sec. III!.

Training examples are of the form (jm,zm) where m
51,2,... labels each independently drawn example in a
quence and components of the input vectorsjm are uncorre-
lated random variables with zero mean and unit varian
The corresponding outputzm is given by a teacher which
may be corrupted by output noise and is of a similar confi
ration to the student except for a possible difference in
numberM of hidden units:zm5(n51

M g(Bn•jm)1rm, where
B[$Bn%1<n<M is the set of input-to-hidden adaptive weigh
for teacher hidden nodes andrm is zero mean Gaussian nois
of variance s2. The activation of hidden noden in the
teacher under presentation of the input patternjm is denoted
yn

m5Bn•jm. We will use indicesi , j ,k,l to refer to units in
the student network andn,m for units in the teacher network

The error made by the student is given by the quadr
deviation,
-
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g~xi
m!2 (

n51

M

g~yn
m!2rmG2

. ~1!

This training error is then used to define the learni
dynamics via a gradient descent rule for the update
student weights Ji

m115Ji
m1(h/N)d i

mjm, where d i
m

[g8(xi
m)@(n51

M g(yn
m)2( j 51

K g(xj
m)1rm# and the learning

rateh has been scaled with the input sizeN. Performance on
a typical input in the absence of noise defines the gene
zation erroreg(J)[^e(J,j)&$j%us50 through an average ove
the distribution of input vectors.

Expressions for the generalization error and learning
namics have been obtained@5# in the thermodynamic limit
(N→`), and can be represented by a set of macrosco
variables~order parameters! of the form Ji•Jk[Qik , Ji•Bn
[Rin , andBn•Bm[Tnm , measuring overlaps between st
dent and teacher vectors. The overlapsR andQ become the
dynamical variables of the system whileT is defined by the
task. The learning dynamics is then defined in terms of d
ferential equations for the macroscopic variables with resp
to the normalized number of examplesa5m/N playing the
role of a continuous time variable:

dRin

da
5hf in ,

dQik

da
5hc ik1h2y ik , ~2!

where f in[^d i yn&$j% , c ik[^d ixk1dkxi&$j% , and y ik
[^d idk&$j% . The explicit expressions forf in , c ik , y ik , and
eg depend exclusively on the overlapsQ, R, andT @5#. The
equations of motion, depending on a closed set of par
eters, can be integrated and iteratively solved, providin
full description of the order parameter evolution from whi
the evolution of the generalization error can be derived.
though the dynamical equations considered here are
strictly valid in the largeN limit, they have been shown to
describe mean behavior accurately for systems of real
size @12#.

III. GLOBALLY OPTIMAL LEARNING RATE

If we consider the fastest rate of decrease in general
tion error as a measure of optimality, it is straightforward
find the locally optimal learning rate by determining th
value of h that minimizesdeg /da, using the equations o
motion forR andQ and the fact that the change in genera
zation error over time depends exclusively on these qua
ties. The expression obtained for the locally optimal learn
rate is then

h52

(
in

~]eg /]Rin!f in1(
ik

~]eg /]Qik!c ik

2(
ik

~]eg /]Qik!y ik

. ~3!

Although the value ofh obtained in this manner may b
useful for some phases of the learning process it is likely
be useless for others. For example, the lowest generaliza
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error for the symmetric phase, characterized by a lack
differentiation between the student nodes, is achieved
gradually reducing the learning rate towards zero; howe
decaying the learning rate in the symmetric phase will p
vent the system from escaping the symmetric fixed po
thus resulting in a suboptimal solution.

A more useful measure of optimality is the total reducti
in generalization error over the entire learning process. W
this measure one can then define theglobally optimallearn-
ing rate in a given time window@a0 ,a1# to be that which
provides the largest decrease in generalization error betw
these two times. We write the change in generalization e
as an integral,

Deg~h!5E
a0

a1 deg

da
da5E

a0

a1
L~h,a!da. ~4!

This is a functional of the learning rate which we will min
mize by a variational calculation. Since the generalizat
error depends solely on the overlapsQ, R, andT, which are
the dynamical variables, we can expand the integrand
terms of these variables,

L~h,a!5(
in

]eg

]Rin

dRin

da
1(

ik

]eg

]Qik

dQik

da

2(
in

m inS dRin

da
2hf inD

2(
ik

n ikS dQik

da
2hc ik2h2y ikD . ~5!

The last two terms in Eq.~5! force the correct dynamic
using sets of Lagrange multipliersm in andn ik corresponding
to the equations of motion forRin andQik , respectively.

Variational minimization of the integral in Eq.~4! with
respect to the dynamical variables leads to a set of cou
differential equations for the Lagrange multipliers,

dm jm

da
52h(

in
m in

]f in

]Rjm
2h(

ik
n ik

]~c ik1hy ik!

]Rjm
,

~6!
dn j l

da
52h(

in
m in

]f in

]Qjl
2h(

ik
n ik

]~c ik1hy ik!

]Qjl
,

along with a set of boundary conditions,

m in~a1!5
]eg

]Rin
U

a1

and n ik~a1!5
]eg

]Qik
U

a1

. ~7!

Then taking variations with respect toh we find a simple
expression for the globally optimal learning rate,

h52

(
in

m inf in1(
ik

n ikc ik

2(
ik

n iky ik

. ~8!
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Equations~6!, ~7!, and~8! determine necessary condition
for h to maximize the reduction in generalization error ov
the interval@a0 ,a1#. The boundary conditions correspond
the locally optimal solution in Eq.~3!, reflecting the fact that
at a1 the choice ofh does not affect the dynamics at oth
times. To find the learning rate which satisfies this set
conditions we use gradient descent on the functional der
tive of Deg with respect toh,

h~ t11!5h~ t !2Q
dDeg

dh
,

~9!
dDeg

dh
5(

in
m inf in1(

ik
n ik~c ik12hy ik!,

wheret is the iteration index andQ is the step size for the
iteration process. In order to choose an appropriate value
Q we employ second order variations,

Q}S d2Deg

dh2 D 21

5S 2(
ik

n iky ikD 21

. ~10!

Standard heuristics can be used to ensure that the itera
process does not diverge if the second order variations
come negative, or close to zero.

All terms required for determining the functional deriv
tives in Eqs.~9! and ~10! can be obtained by integrating th
equations for the overlaps forward, using Eqs.~2! and some
initial conditions, and then backwards for the Lagrange m
tipliers, using Eqs.~6! and the boundary conditions ex
pressed in Eq.~7!. In our implementation the overlaps ar
stored during the forward dynamics and reused during
backwards dynamics for the Lagrange multipliers. This p
cess converges within a few iterations and results in an e
function for the optimal learning rate over the given tim
window.

One limitation of the present model is the assumption
fixed hidden-to-output weights and it is straightforward
include variable hidden-to-output weights@10,11#, resulting
in an extra set of dynamical equations. However, if the lea
ing rate associated with these weights is chosen to be of
same order as for the input-to-hidden weights then our o
mization procedure shows that the learning rate associ
with these weights should be set infinitely high, indicati
that the chosen scaling is inappropriate and that learn
should be on a faster time scale for these weights. This
be incorporated as an adiabatic elimination of the fast v
ables, as justified in@10# where it is shown that this provide
a locally optimal choice for the hidden-to-output weights~a
choice which minimizes the generalization error instan
neously!. Our analysis therefore indicates that adiaba
elimination is also globally optimal. Since the soft committ
machine considered here captures the main features o
dynamics for the remaining input-to-hidden weights, we w
not consider hidden-to-output weights further in this work

IV. NUMERICAL RESULTS

The examples presented in this section will involve s
dents and teachers of equal complexity (K5M ) and isotro-
pic teachers (Tnm5dnm), although the technique can be us
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FIG. 1. Results are presented for a three hidden node student trained to emulate an isotropic teacher (Tnm5dnm) of the same configu-
ration. The globally optimal learning rate is shown in~a! along with the corresponding evolution of the generalization error and o
parameters in~b!, ~c!, and~d!. The inset of~b! shows the generalization error~solid line! and the magnitude of the opposing contributio
to the leading term~dashed lines—upper proportional to 2r 2q, lower proportional to 2s2c!. The Lagrange multipliers are shown in~e! and
~f! using a log scale, with the later stages magnified in each inset~dashed line for curves associated with the lower figure!.
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for any soft committee machine. Anisotropic teachers
briefly considered in Sec. VI, when we introduce a si
dependent learning rate. Structurally unrealizable proble
(K,M ) exhibit qualitatively similar behavior to the noise
corrupted teacher which is considered below and are not
cussed here. Initial conditions for the overlapsRin andQiÞk
are taken randomly from a uniform distributionU@0,1026#
while the vector lengthsQii are taken fromU@0,0.5#, a
choice which corresponds to an input dimension of ab
N.1012. The choice of initial conditions is not critical, how
ever, and the optimal learning rate in each phase of learn
is independent of initial conditions~only the length of the
e
-
s

is-

t

g

transient fixed point is altered@13#!. As already pointed out
the framework used here describes mean behavior accur
in much smaller systems@12#.

A. Realizable rules

In our first example we consider a realizable (K5M
53) noiseless training task. The time window is 0<a
<600 and the learning rate is initially fixed at some arbitra
value. The update in Eq.~9! is then iterated until conver
gence and Fig. 1 shows results for the dynamics using
globally optimal learning rate.
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FIG. 2. A two hidden node student is trained on noise-corrupted examples generated by an isotropic teacher (Tnm5dnm) of the same
configuration. The optimal learning rate is shown in~a! for three noise levelss251022, 1025, 1027 ~from left to right! over a fixed time
window 0<a<600. The corresponding generalization error is shown in~b! with the inset showing a log-log plot for the decay at late tim
which indicates that the dashed and solid lines are only split aftera.300.
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Figures 1~a!–1~d! show the optimal learning rate, gene
alization error, and overlaps, respectively. After a short i
tial transient both the learning rate and generalization e
stabilize at almost constant values, corresponding to a s
metric phase in which the student nodes have not yet
cialized to particular teacher nodes, as required to learn
fectly. The overlaps also exhibit a plateau within this pha
and Fig. 1~c! shows that the student-teacher overlaps are
most indistinguishable~the indices have been ordereda pos-
teriori so that student nodei eventually specializes to teach
node i !. The learning rate takes a value of abouth.0.97
within the symmetric phase, which is in close agreemen
the optimal value obtained numerically in a separate st
@9#. Eventually, the student escapes the symmetric phase
the generalization error and overlaps exhibit exponen
convergence towards their respective optimal values, as
learning rate increases towards another constant valu
h51.28, identical to the result obtained independently@9#
for the asymptotically optimal learning rate by expanding
dynamical equations for the overlaps around their asympt
fixed point.

Towards the end of the time window we observe a sh
transient in which there is an unexpected drop in the learn
rate to a value of aroundh50.41@see Fig. 1~a!#. This can be
explained by examining the expression for the generaliza
error in the vicinity of its asymptotic fixed point. It is pos
sible to gain an immediate reduction in generalization er
by choosing an appropriate direction for the decay eigenv
tors. Using the symmetry of the problem we expand the g
eralization error around the fixed point viaRin5d in(12r )
1(12d in)s and Qik5d ik(12q)1(12d ik)c to find two
contributions to the leading term of opposite sign, prop
tional to 2r 2q and 2s2c, respectively. These are shown
the inset to Fig. 1~b! along with the corresponding genera
zation error for 570<a<600. By reducing the learning rat
it is possible to reduce the difference in magnitude betw
these opposing contributions, leading to a reduction in g
eralization error. However, this reduction in learning ra
slows down the exponential convergence of the overlaps
is therefore unsustainable in the long term. Thus this gre
drop-off in the learning rate only ever occurs towards the e
of the given time window. This example shows how loca
-
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optimal learning does not necessarily give good long-te
performance, even asymptotically. The long-term goal in t
case is to optimize the decay rate of the order parame
while changes in the decay direction can provide short-te
gains but will eventually lead to poorer performance.

The various phases of learning described above are
rored by the Lagrange multiplier dynamics shown in Fig
1~e! and 1~f!. Figure 1~e! shows how during the symmetri
phasem i i andm iÞn decay exponentially with similar magni
tude but opposite sign. At the same time Fig. 1~f! shows that
n i i andn iÞk also have opposite signs but remain almost c
stant during the symmetric phase. After escaping the s
metric phase all the Lagrange multipliers exhibit an exp
nential growth with the same constant rate, which is equa
magnitude to the decay rate of the generalization error at
point. The inset to each figure magnifies the short transien
the end of the optimization time window in which the exp
nential growth is interrupted as each Lagrange multip
finds the appropriate boundary value.

Notice that the dynamics of the overlaps and Lagran
multipliers forms a small number of bundled similar traje
tories, reflecting symmetries in the task. By exploiting the
symmetries the dimensionality of the system can be redu
significantly, allowing a compact description for arbitraryK
andT. This dimensionality reduction has already been us
to study the different phases of learning in@5,9# and in Sec.
V we elucidate the relationship between our algorithm a
these studies.

B. Noise-corrupted rules

In our second example we consider an unrealizable le
ing scenario by introducing additive uncorrelated Gauss
noise of zero mean and variances2 to the teacher’s output
Qualitatively similar results are obtained for structural un
alizability (K,M ). The picture that emerges, shown in Fi
2 for K5M52 and various noise levels~s251022, 1025,
and 1027!, is initially similar to the realizable case bu
changes dramatically as the system escapes the symm
phase. As the system begins convergence towards zero
eralization error, as shown in Fig. 2~b!, the optimal learning
rate shown in Fig. 2~a! begins to fall and slowly approache
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FIG. 3. As in Fig. 2, a two node student is trained on noisy examples from a teacher of the same configuration. Here the nois
fixed ats251027 while the optimization process is carried out over different time windows 0<a<a1 with a15600, 2000, and 104 ~from
left to right!. The asymptotic decay of the learning rate~a! and generalization error~b! are shown for each case. The initial behavior is simi
to that presented in Fig. 2.
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a decay inversely proportional toa, proved to be optimal for
linear systems~see, for example,@14#!, until reaching a
greedy phase~after the kink arounda5440 in Fig. 2!. ~Re-
call that this is the generalization error in the absence
noise. The prediction error for a noisy teacher has an add
constant contribution equal to half the noise variance.! This
greedy reduction in generalization error is achieved
changing the decay direction, as for the realizable learn
scenario described above.

Figures 3~a! and 3~b! show a log-log plot of the learning
rate and generalization error, respectively, as a function oa
for optimization over time windows of varying length. On
observes that both the learning rate and generalization e
approach a decay proportional to 1/a and that the curves lie
on top of one another until the greedy phase which occ
towards the end of each time window. However, unlike
realizable case where the drop-off in learning rate occ
over a relatively short time, here the final greedy phase
creases in length as the total learning time window increa
and this phase always takes a significant proportion of
learning time~this is not immediately apparent in Fig. 3 un
one considers that thex axis represents a log scale!. This is
simply a reflection of the slower decay time scale for t
problem.

Our results suggest that as symmetry breaks one sh
gradually modify the decay rate from a constant until it
proportional to 1/a ~in terms of a rescaled time, which is s
to zero close to the point where symmetry is broken!. How-
ever, it may take a prohibitively long time until the 1/a de-
cay becomes optimal, making it irrelevant in many instanc
Moreover, if one decays the learning rate at a fixed rat
may take an extremely long time before losses, incurred
to the use of suboptimal learning rates in earlier stages of
dynamics, can be recovered. Annealing the learning rate
ing the symmetric phase could even lead to trapping, si
the length of the symmetric phase scales inversely toh for
small h @5#.

V. ANALYSIS OF THE OPTIMAL LEARNING DYNAMICS

In general, the dynamical equations~2! and~6! are rather
hard to analyze as they are high dimensional and stron
nonlinear. However, as we saw in the preceding section
overlap dynamics is often dominated by fixed points~the
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symmetric and convergence phases! around which we can
make a linear expansion. We therefore carry out a sim
analysis of our variational algorithm in the neighborhood
such a fixed point, leading to some valuable insight into h
the algorithm optimizes performance.

It would still be rather difficult to solve the linear mode
for such a high-dimensional system; however, for realiza
(K5M ) learning of an isotropic task (Tnm5Tdnm) the
analysis can be simplified by exploiting symmetries betwe
the dynamical variables, thereby reducing the dimension
manageable level and avoiding degeneracies. In this way
can determine generic behavior in terms of the variableT
and K. This simplification has recently been used to det
mine optimal parameters for both the symmetric and conv
gence phases by an eigenvalue analysis around each
point @9# ~previous results for the convergence phase@5#
made use of an inaccurate assumption!. Instead of rederiving
many of these results, we focus on showing the close r
tionship between this work and the variational method a
on understanding how our algorithm finds optimal para
eters in the simplest scenario, in order to inform our use
the algorithm for more general problems. Details of the fix
points and linearized dynamics considered here are give
@9#.

The following analysis requires that the learning rate
fixed in the phases of interest and is therefore only applica
to learning noiseless examples, at least for the converge
phase. The noise-corrupted rules considered in Sec. I
will require a different approach, perhaps using recent res
for optimal annealing schedules in the presence of no
@15#. We leave this analysis for future study.

A. Behavior near a fixed point

Let y be a vector of dynamical variables, which can
thought of as deviations from some fixed point. In the neig
borhood of such a fixed point we have a linearized system
differential equations,

dy

da
5My , ~11!

which corresponds to decay in the neighborhood of a sta
fixed point ~the convergence phase! or divergence in the
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neighborhood of an unstable fixed point~the symmetric
phase!. Here, the matrixM depends onh which is taken to
be constant within the region considered. Letz denote the
associated vector of Lagrange multipliers. The lineariz
equivalent of Eq.~6! is then

dz

da
52MTz. ~12!

Let U denote the matrix whose columns are eigenvector
M and letl denote the corresponding vector of eigenvalu
Then (U21)T is the matrix of eigenvectors of2MT with
eigenvalues2l. We write the general solutions fory andz
in component form,

yi5(
j

Ui j exp~al j !, zi5z0i1(
j

b jUj i
21exp~2al j !,

~13!

where the$z0i% are components of a fixed point forz and are
independent ofa, while b i weights thei th mode ofz and
will depend on the boundary conditions of the fixed po
neighborhood.

The functional derivative ofDeg with respect toh is
given by

dDeg

dh
5zT

]M

]h
y5zTS ]~My !

]h
2M

]y

]h D5(
i

b i

]l i

]h

1(
i j

b i~l j2l i !e
a~l j 2l i !(

k
Uik

21 ]Uk j

]h

1(
i j

z0iF ~11l j !Ui j

]l j

]h
1l j

]Ui j

]h Geal j ,

~14!

where we have used Eqs.~11!, ~12!, and~13!. Equation~14!
identifies the various contributions to changes inh under
gradient descent on the functionalDeg(h) in the neighbor-
hood of a fixed point. The first term contributes changes
the gradient direction of the eigenvalues while the sec
term involves derivatives of the eigenvectors with respec
h. The final term involves the fixed point forz. Notice that
the first term is independent ofa while any contributions
from the second term will necessarily depend ona. The final
term can only contribute a quantity independent ofa if an
eigenvalue becomes zero and we do not find zero eigen
ues for either of the fixed points considered here in
neighborhood of the optimal learning rate.

The functional derivative in Eq.~14! will only disappear
at constanth if a-dependent terms are negligible~of much
lower order than the first term, which is independent ofa!.
This condition is satisfied by ensuring that any term who
exponent is positive and proportional toa has a sufficiently
small prefactor. We therefore obtain conditions sufficie
and most likely necessary@for example, these conditions ar
necessary if each contribution to the second term of Eq.~15!
has a different exponent proportional toa, which is also
different to any exponents in the final term; this is true
long as eachl i2l j takes a unique value which also diffe
from everyl i#, for the existence of a constanth fixed point
d

of
.

t

n
d
o

al-
e

e

,

in an optimal linear system: ~1! We require that each com
ponent of the fixed point forz be sufficiently small to ensure
the final term in Eq.~14! is negligible, and~2! we further
require thatub i u!ub j u for at least onej for which l j.l i and
(kUik

21]Uk j /]h is nonzero~which implies dependence o
the j th eigenvector onh!.

Close to the optimal learning rate only the first term in E
~14! will be significant, since any other remaining term
would have a stronga dependence~here we assume that on
cannot chooseh to make the first term zero while simulta
neously setting the prefactor of any remaininga-dependent
term to zero!. In practice, for a nondegenerate system
often find that a single mode in the Lagrange multiplier d
namics is dominant (ub j u@ub iÞ j u) and in this case the effec
of our algorithm is to carry out gradient descent~ascent! on
this dominant mode,

dDeg

dh
}

]ldom

]h
. ~15!

The second condition above suggests that the domin
mode will have a relatively large eigenvalue, although n
necessarily the largest eigenvalue. For example, if the lar
eigenvalue is associated with an eigenvector which is in
pendent ofh then we can say nothing about its weight re
tive to modes with smaller eigenvalues. In this case it
necessary to consider the boundary conditions of the fi
point neighborhood in order to determine which mode
dominant. In both the symmetric and convergence phases
find exactly this situation and in the latter phase we find
mode with the second largest eigenvalue to be domin
~each phase is considered in greater detail below!. The sign
of the proportionality constant in Eq.~15! also depends on
the boundary conditions of the fixed point neighborhood a
we typically find that the eigenvalue is maximized within a
unstable fixed point~maximizing the speed of escape fro
the symmetric phase!, or minimized when converging to a
stable fixed point. The case where two or more~non-
degenerate! modes contribute is discussed at the end of t
section, when we consider the effect of second order con
butions to the generalization error.

Note that our discussion is not strictly valid if the fixe
point changes withh, as is the case for the symmetric pha
considered below. The picture developed here holds as
as these changes are relatively slow and we will theref
neglect any suchh dependence.

B. The symmetric phase

As demonstrated in Sec. IV, the learning time can
dominated by a symmetric phase in which student nodes
to differentiate between teacher nodes, resulting in poor g
eralization performance. This phase represents an attra
fixed point of the dynamics which becomes unstable as sm
perturbations due to nonsymmetric initial conditions even
ally lead to the symmetry breaking required for the studen
improve.

Unfortunately, it seems impossible to study the symme
phase analytically for finiteh and a numerical study of this
fixed point was therefore carried out in@9#, reducing the
dimensionality of the system by exploiting symmetries b
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tween the overlaps in order to determine generic behav
We employ the same dimensionality reduction in order
analyze our linearized system in the neighborhood of
symmetric fixed point. The overlaps are then represented
Qik5Qd ik1C(12d ik) and Rin5Rd in1S(12d in), where
student node indices have been chosen to correspond
the teacher node with which they will eventually specializ
Following @9#, we can make some analytical progress
considering a fixed point characterized byQ5C andR5S.
This fixed point only exists for significant times whenh is
small, since any difference betweenQ andC is quickly in-
creased by a positive eigenvalue of orderh2. The resulting
fixed point with Q.C is the one actually observed in ou
simulations@see Fig. 1~d!# but unfortunately this fixed poin
cannot be studied analytically. Many features of this fix
point are also observed for theQ5C fixed point, however,
and it is therefore instructive to consider this case first.

To aid clarity we chooseT51, although qualitatively
similar results are found for arbitraryT. The vector of de-
viations from the order parameter fixed point isy5(R
2R* ,S2S* ,Q2Q* ,C2C* )T where (R* ,S* ,Q* ,C* )T is
the fixed point~we assume that theh dependence of this
fixed point is negligible!. The conjugate vector of Lagrang
multipliers isz5(mR ,mS ,nQ ,nC)T. They dynamics is asso
ciated with the following matrix:

U5S K21 1 U ~1/2!3 U ~1/2!4

21 1 U ~1/2!3 U ~1/2!4

0 U32 1 1

0 U42 1 1

D , ~16!

where thei th column ofU is the eigenvector associated wi
eigenvaluel i and the componentsUi j depend onh and K
@9#. The columns ofU have been arranged so that they a
associated with eigenvalues which are decreasing from le
right (l i . j,l j ). The first eigenvalue is the only positiv
one ~unlessh is significantly larger than its optimal setting!
and results in the divergence ofR and S which eventually
leads to escape from the symmetric phase.

Recall that the eigenvectors for the Lagrange multip
dynamics are given by the columns of (U21)T and that the
i th column is associated with eigenvalue2l i ,

~U21!T5S 1/K 0 ... ...

21/K 0 ...

0 ~U322U42!
21

0 2~U322U42!
21

D . ~17!

The entries in the final two columns of the second ma
involve various combinations of theUi j andK which are not
shown here as their exact form is not important. From
discussion in Sec. V A we expect that the third and fou
modes for the Lagrange multiplier dynamics will have a ve
small weight (b3/4!b1/2). However, since the first eigenvec
tor is independent ofh we cannot determine whether it wi
be dominant without knowing something about the bound
conditions of the symmetric phase. These boundary co
tions are determined according to the dynamics away fr
r.
o
e
by

ith
.
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to
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h
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the fixed point considered here and therefore we can o
proceed by observing what happens in practice.

We find that theQ5C fixed point considered abov
seems to be a rather good model for theQ.C fixed point
observed in simulations. In Fig. 4 we plot the magnitude
Ṙ5dR/da, Ṡ5dS/da, ṁR5dmR /da, and ṁS5dmS /da
during the symmetric phase, for simulations of the reduc
dimensionality system considered here~with K53 and h
fixed at its optimal value for the symmetric phase!. Initially
Ṙ andṠ are indistinguishable until differences due to asy
metric initial conditions are amplified and they diverge a
cording to the dominant mode described above~we plot the
magnitudes here—the signs ofṘ and Ṡ are different after
abouta5160!. Meanwhile,mR andmS decay with the same
rate as the growth ofR andS and their rates of change hav
exactly the same magnitude but opposite sign. This is
agreement with the behavior expected for the first mo
whose eigenvector for the Lagrange multiplier dynamics
shown in the first column of (U21)T above. This mode doe
not contribute to changes innQ andnC and becauseṅQ and
ṅC are observed to have much smaller magnitudes thanṁR

andṁS we conclude that the second mode is associated w
a much smaller weight in the Lagrange multiplier dynam
(b2!b1). The first mode is therefore dominant and t
variational algorithm finds the maximum ofl1 @see Eq.
~15!#. This is exactly the mode considered in@9# wherel1
was maximized numerically and our results agree well w
results from that work~more evidence for this is provided i
Sec. V E!. However, in that study it was very difficult to find
the relevant fixed point, requiring much tedious numeri
work, and it was not known whether that fixed point rea
determined the optimal time-dependent learning rate.

C. The convergence phase

Once the student nodes specialize to specific teac
nodes the dynamics quickly leaves the symmetric phase

FIG. 4. Magnitudes of the rates of change forR, S, and their
conjugate Lagrange multipliers are shown during the symme
phase for a simulation of the reduced dimensionality equation

motion with T51 and K53. The curves areuṘu ~dotted!, uṠu
~dashed!, uṁRu ~full !, and uṁSu ~dot-dashed!. The learning rate is
fixed at the optimal value for the symmetric phase and the ini
conditions wereR51026, Q50.25, andS5C50.
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approaches a convergence phase in which the overlaps
generalization error exhibit an exponential convergence
wards their optimal values~in the absence of noise!. In this
case it is possible to study the fixed point analytically@9#.
We first discuss a completely linear system, in which hig
order contributions to the generalization error are negligib
Inclusion of second order terms is required for a more co
plete description, as discussed in Sec. V D.

As in the symmetric phase there is a mode whose eig
vector is independent ofh ~recall our second condition for
fixed point in an optimal linear system in Sec. V A!. This
turns out to be the slowest~least negative! mode for the
overlap dynamics and is orthogonal to the leading term
the linearized generalization error, so not contributing to
decay. In this case the mode associated with the next lar
eigenvalue dominates the Lagrange multiplier dynamics@and
therefore the first term in Eq.~14!# at late times. It is there-
fore this eigenvalue which is minimized by our variation
algorithm @recall Eq.~15!#.

In general it is difficult to study analytically how th
boundary conditions affect the Lagrange multiplier dynam
because of the greedy drop-off inh at the end of the optimi-
zation time window which was described in Sec. IV~see Fig.
1!. This greedy phase is not described by our linear sys
~which requires a constanth! and therefore the final bound
ary conditions occur outside the region in which our line
model provides a good approximation. However, for the p
ceptron (M5K51) this greedy phase does not occur a
the boundary conditions are well defined for our linear s
tem. It is therefore instructive to consider the perceptron a
special case.

For the perceptron~with T51! we expand around the
convergence fixed point viay5(r ,q)T where r 512R and
q512Q with associated Lagrange multipliersz5(zr ,zq)T.
They andz dynamics are associated with the following m
trices, respectively~recall that the columns are eigenvector!:

U5S 1 U12

2 U22
D , ~U21!T}S U22 22

2U12 1 D , ~18!

whereU12 and U22 are functions ofh ~see@5# for details!.
The linearized generalization error is proportional tor
2q, so that the boundary conditions for the Lagran
multipliers are ~ignoring a multiplicative constant! z(a1)
5(2,21)T @see Eq.~7!#. This boundary condition corre
sponds exactly to the second column in (U21)T ~except for a
change in sign! so that the mode associated with this colum
must be completely dominant for thez dynamics at late
times. Therefore the mode whose eigenvector is orthogo
to the generalization error~the first column inU! in the y
dynamics is irrelevant to determining the optimal learni
rate in a completely linear system~however, as discusse
below this mode may still contribute to second order terms
the generalization error!.

Although we cannot extend this argument to a gene
multilayer system, because the boundary conditions oc
outside the region in which our linear model is reliable
similar effect is observed in general. Recall the reduced
mensionality equations of motion which were used to a
lyze the symmetric fixed point„Qik5Qd ik1C(12d ik),
Rin5Rd in1S(12d in)…. Figure 5 shows the evolution of th
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overlap deviations~r 512R, q512Q, s5S, c5C! and
their conjugate Lagrange multipliers during the converge
phase for a simulation of the reduced dimensionality syst
The generalization error is also shown and exhibits a fa
decay than the overlaps, because the slow mode which
termines the decay of the overlaps is orthogonal to the
earized generalization error~higher order contributions to the
generalization error are negligible in this case!. It is therefore
the second slowest mode which determines the decay ra
the generalization error. As for the simpler perceptron c
described above, it is this second mode which is mirrored
the Lagrange multiplier dynamics and Fig. 5 shows how
Lagrange multipliers grow with the same rate as the gen
alization error decays. The second mode is therefore do
nant and the variational algorithm minimizes the associa
eigenvalue@see Eq.~15!#. This eigenvalue was minimized
explicitly in @9# and again we find excellent agreement w
results from our variational algorithm~see Sec. V E!.

D. The effect of quadratic terms in the generalization error

The above discussion does not address the consider
that although we can assume an essentially linear dynam
system in the neighborhood of fixed points, we may s
have to consider higher order contributions to the gener
zation error. Optimizing the convergence rate of the line
ized dynamics is only optimal in general if we are minimi
ing a linear function of the dynamical variables. Indeed
was noted in@9,11# that quadratic contributions to the gen
eralization error determine the slow mode for converge
for realizable learning (M5K) with an isotropic teacher
(Tnm5Tdnm) whenT is above some critical valueTcrit . This
is because there is an eigenvector orthogonal to the lin
ized generalization error which therefore does not contrib
to its decay, but which does contribute to the decay of q
dratic terms in the generalization error. ForT.Tcrit the op-
timal asymptotic learning rate is the value which allows t

FIG. 5. The magnitudes of the overlap deviations~r 512R, q
512Q, c5C, s5S! and Lagrange multipliers are shown durin
the convergence phase for a simulation of the reduced dimens
ality equations of motion withT51, K53, and optimal learning
rate. The curves for the overlap deviations areuqu ~full !, ur u ~dot-
ted!, ucu ~dashed!, and usu ~dot-dashed! and their conjugate
Lagrange multipliers are given the same line type. The lower s
curve shows the generalization error. The initial conditions w
R51026, Q50.25, andS5C50.
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6388 PRE 58MAGNUS RATTRAY AND DAVID SAAD
linear and quadratic terms to decay at the same rate.
might therefore expect our algorithm to approach this
ymptotically optimal value at late times. However, in view
the fact that the end-point boundary conditions for t
Lagrange multipliers@see Eq.~7!# are first derivatives of the
generalization error, it seems unlikely that second or
terms in the generalization error will cause significa
changes to the Lagrange multiplier dynamics at late times
fact, we find that the algorithm deals with quadratic effe
before converging to the optimal learning rate for a line
error.

Figure 6 shows the optimal learning rate for a two hidd
node student learning an isotropic teacher of the same
figuration. The two curves are forT51 (,Tcrit) and T55
(.Tcrit). For T,Tcrit we get a similar picture to Fig. 1~a!
with two well defined plateaus determining the symmet
and convergence phases. However, forT.Tcrit the optimal
learning rate rises after the symmetric phase towards, bu
reaching, the asymptotically optimal value identified in@9#
(h.2.79) for the full generalization error and then falls

FIG. 6. The optimal learning rate is shown for a two hidd
node student learning an isotropic teacher (Tnm5Tdnm) also with
two hidden nodes. The two curves are for teacher lengthsT51
~solid curve! andT55 ~dashed curve!. The larger teacher length i
above the critical valueTcrit where second order contributions to th
generalization error become significant at late times. The learn
time has been rescaled so that the curves fit on the same graph

ã5a for T51 andã51.875a for T55.
ne
-

r
t
In
s

n
n-

ot

the optimal value for a linearized generalization errorh
51.963). Forcing the learning rate to approach the asym
totically optimal value for the full generalization error at la
times leads to poorer performance, suggesting that the a
rithm does indeed find the optimal learning rate. For ve
long time windows we would expect the algorithm to rea
the asymptotically optimal learning rate after the symme
phase and to stay there, before dropping to the optimal le
ing rate for a linearized generalization error. However, t
would seem to require a very low final generalization er
for the cases we have considered~at least 10220, depending
on T andK! and since errors of this order are of little phys
cal relevance and require greater numerical accuracy
achieved by our implementation we do not pursue this
gime here.

E. Generic behavior

Using the reduced dimensionality equations of moti
makes it possible to find the optimal learning rate for ar
trary K, since we avoid the increase in computation tim
necessary to deal with large systems.~The computation time
still seems to grow withK because of increased precisio
required in the numerical integration.! We can therefore run
our algorithm for various values ofK and T in order to
deduce scaling laws for the optimal learning rate within t
two phases of learning. However, as we saw above our
gorithm simply performs gradient descent~ascent! on the
relevant eigenvalue within each phase and the results sh
therefore compare closely to results obtained by optimiz
with respect to this eigenvalue directly.

In Fig. 7 we compare the optimal learning rate determin
by our method to the value found by a direct numerical
genvalue analysis@9# for various values ofK. The results
agree well and any discrepancies may be due to the va
tional algorithm not converging completely, or because th
is some variance in the learning rate within the symme
phase~we used an approximate halfway point to determ
hsym!. This outcome is rather fortuitous, as the scaling la
previously determined for each phase in@9# also describe the
scaling behavior for the globally optimal learning rate. Th
was not obviousa priori since it was not known that the
optimal time-dependent learning rate would be dominated
two plateaus, each with a constant learning rate~indeed, the

g
ith
FIG. 7. We compare results for the optimal learning rate found by our variational method~circles! to results from a direct optimization
of the relevant eigenvalue~solid line! as a function of task complexityK for ~a! the symmetric phase and~b! the convergence phase. A
reduced dimensionality system describing an isotropic, realizable task (Tnm5dnm) was used to obtain both sets of results.
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discussion in Sec. V D shows that this is not always
case!.

It is interesting to summarize some of the scaling la
deduced in@9# ~we will only consider fixedT here!. During
the symmetric phase the optimal learning rate scales asK25/3

for large K and the trapping time within the symmetr
phase, which determines the total training time, scales
K8/3. During the convergence phase the optimal learning
scales as 1/K. The maximal learning rate in each phas
above which perfect learning is impossible, scales in
same way as the optimal learning rate. One therefore fi
that using a learning rate which is optimal asymptotica
will be very bad during the transient, either leading to tra
ping within the symmetric phase or divergence of the stud
weight vector norms. For an account of other scaling p
nomena~for example, with respect to task nonlinearityT!,
see@9#. Of course, in many cases it would be very difficult
carry out an eigenvalue analysis~we have only considered
the simplest scenario of a single parameter and an isotro
noiseless task! and our algorithm therefore provides a pow
erful alternative tool for determining generic results.

F. Limitations to the variational approach

The analysis in Sec. V A suggests a possible limitation
our variational algorithms if eigenvalues are multimodal,
might be the case if the equations of motion involved hig
powers, or other nonlinear functions, of the parameters be
optimized. In this case the algorithm may get stuck in fun
tional local minima, since we are effectively carrying o
gradient descent~ascent! on the dominant eigenvalue.

Certain initial settings for the learning rate may also res
in convergence to functional local minima which are subo
timal. For example, if the learning rate is chosen to be v
low initially and the time window is not sufficiently long fo
the system to leave the symmetric phase then the algor
may anneal the learning rate in an attempt to optimize p
formance without leaving the symmetric subspace. As w
any differential method we are at the mercy of local minim
our conditions for the globally optimal learning rate are ne
essary but not sufficient. From careful study of the dynam
we are satisfied that all the solutions presented in this w
are globally optimal.

VI. SITE-DEPENDENT LEARNING RATES

It is straightforward to extend our method to more co
plex learning rules and to different learning parameters. A
simple example we consider a generalized gradient des
algorithm in which different learning rates are associa
with different hidden nodes, so that the new update rule
given byJi

m115Ji
m1(1/N)h id i

mjm. This enables the system
to explore more complex routes to breaking symmetry a
converging to the optimal solution. The derivation for t
optimal site-dependent learning rate follows the discussio
Sec. III closely and is therefore not included here.

A. Isotropic teacher

In our first example we train a three hidden node syst
on examples generated by a three node isotropic tea
(M5K53), using three different learning rates related
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the various hidden nodes. The optimal learning rates and
corresponding generalization error are shown in Figs. 8~a!
and 8~c!, respectively. Comparison with Fig. 1~b! shows a
significant improvement over standard gradient descent,
though the dynamics is still dominated by a symmetric p
teau~the initial conditions were the same in both cases!. A
shortened symmetric plateau is achieved by setting
learning rate close to zero while the other two are assigne
high value, much higher than the optimal learning rate
standard gradient descent on the same problem~but lower
than the optimal learning rate for standard gradient desc
with M5K52!. Once the two nodes associated with t
high learning rate become associated to specific tea
nodes, the learning rate associated with the third node r
rapidly as it learns the remaining teacher node. Eventua
all learning rates converge to the same constant and asy
totically optimal value, which is the same as for standa
gradient descent@see Fig. 1~a!#, before the greedy drop-off in
h which was explained in Sec. IV. The same pattern of s
cessively active learning rates and hence a phased symm
breaking is repeated for larger isotropic systems, sugges
that using different learning rates for different nodes may
beneficial for speeding up the learning process in general
escaping the symmetric phase in particular.

B. Graded teacher

In our second example we train the same three hid
node system on examples generated by a graded three
teacher (Tnm5ndnm). The optimal learning rates and th
corresponding generalization error are shown in Figs. 8~b!
and 8~d!, respectively. The optimal site-dependent learn
rate shows a much richer behavior in this example. Initia
the learning rate associated with the node learning the lar
teacher vector~solid line! is highest, followed by phases i
which the learning rates associated with nodes learning
intermediate and smallest teacher vectors increase in t
This corresponds to what one might expect, since the sys
specializes to teacher nodes in order of decreasing impa
the teacher output. Eventually each learning rate approa
an asymptotically constant value, before dropping off
wards the end of the time window due to the greedy eff
explained in Sec. IV. Here, we see that the order of learn
rate magnitudes has changed, so that the learning rate fo
node associated with the largest teacher node is smalles
vice versa. This is a somewhat unintuitive result, since
optimal asymptotic learning rate for standard gradient
scent increases with increasingT @9#. Unfortunately, an ana-
lytical study of this scenario is hampered by the lack of
mensionality reducing symmetries in this case. It would
most interesting to study the relationship between values
signed to the learning rates in this case and the corresp
ing effective values suggested by other methods which inc
porate information about curvature of the mean error surf
and have been proved asymptotically optimal@16#.

VII. CONCLUSION

We have described a method for determining optim
learning rates for on-line learning in a soft committee m
chine, using a variational calculation to maximize the to
reduction in generalization error over a fixed time windo
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FIG. 8. A three hidden node student with site-dependent learning rates is trained to emulate a teacher with the same number
nodes. The globally optimal learning rates are shown in~a! for an isotropic teacher (Tnm5dnm) and in ~b! for a graded teacher (Tnm

5ndnm). The corresponding generalization errors are shown in~c! and~d!, respectively. In~b! the learning rates are associated with nod
learning the following teacher nodes—dashed line for the node learning the first teacher node (T1151), dotted line for the second (T22

52), and solid line for the third (T3353).
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The method makes use of a recent statistical mecha
model which allows a compact and exact description of
learning process for large input dimension via different
equations for a small number of macroscopic quantities.

Learning with the optimal learning rate still suffers from
trapping in a symmetric phase reported in@4,5#, which domi-
nates training time, and the fastest escape time is achieve
maximizing the only positive eigenvalue within this unstab
fixed point. An analytical study of our variational algorithm
in the neighborhood of fixed points, which uses a line
model, shows this to be the expected behavior of our al
rithm and explains the excellent agreement with previo
results for isotropic, realizable tasks@9#, in which the escape
eigenvalue within this phase was maximized explicitly,
lowing a rather general characterization of the optimal lea
ing rate dynamics. During the convergence phase the slow
mode, which is orthogonal to the first order term in the ge
eralization error, does not contribute to the optimization oh
at late times and the dominant mode was the next slow
This result is also found to be consistent with our analysis
the variational algorithm near a fixed point. For the perce
tron it is possible to show exactly how the boundary con
tions lead to the exclusion of the slowest mode, but in g
eral this is not possible because the boundary conditi
occur outside the region in which our simple linear mod
holds due to a greedy minimization of the generalizati
error at the end of the optimization time window. The ma
difference between our results for this example and
analysis in@9# is in the consideration of second order cont
butions to the generalization error, which in some situatio
cs
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determine the fastest asymptotic decay. We find that th
second order effects play a role immediately after the sy
metric phase, but that the algorithm always approaches
optimal learning rate for a linearized generalization error
late times. In fact, these second order effects are only
evant when the optimization time window is sufficient
large to allow a very low generalization error and they m
therefore be irrelevant in practice.

Learning from corrupted examples provides a very diff
ent picture. After leaving the symmetric phase the optim
learning rate is gradually annealed towards a decay inver
proportional toa. As for the noiseless case there is a gree
phase towards the end of the optimization time window,
flecting a change in the decay direction, which provide
short-term improvement but is unsustainable for long
times. Our results suggest that there is some danger in
nealing the learning rate too early, since losses due to
initially low learning rate might never be recovered and t
learning process could even become trapped within the s
metric phase.

The main benefit of the present approach lies in its g
erality. We can apply our optimization scheme to learni
scenarios or phases of learning for which analysis is inf
sible, either because the dynamics cannot be captured by
sufficiently simple model or because we have insufficie
insight. Indeed, we have recently used our approach to
termine globally optimal learning rules@6#, extending previ-
ous results for locally optimal rules@17#. We have also used
this framework to determine the efficacy of a quadratic re
larizer@7# and in order to quantify the performance of natu
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gradient learning@8#, an on-line variable-metric algorithm
which was recently introduced by Amari@16#. In the latter
study we show how learning time scales better with incre
ing numbers of hidden nodes for this algorithm when co
pared with optimized gradient descent. In the present pa
we showed how one can apply the optimization procedur
a generalized algorithm in which different nodes are ass
ated with different learning rates. The picture which emer
shows a rich behavior for the optimal learning rates, es
cially in the case of a graded teacher. There is signific
evidence that such a generalized algorithm will provide ga
over standard gradient descent. However, a question w
remains to be answered is whether one can find prac
-

s-
-
er
to
i-
s

e-
nt
s
ch
al

methods for selecting parameters close to the optimal o
determined here. This has been carried through in some c
for the asymptotic stages of learning~see, for example,@18#!
and asymptotically optimal algorithms also exist@16#, but as
we have seen here the transient stages of learning will o
dominate the training time. We hope that the present anal
will aid the search for a principled solution to this problem
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